Molecular Parity Violation.

Ľuboš Horný Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland

DCHAB Department of Chemistry and Applied Biosciences

Parity violation: *i*) arises when parity operator P does not commute any more with the Hamiltonian of the system

ii) electroweak interaction does not conserve symmetry – this *parity violationg* effect has been measured and calculated very accurately for forbidden atomic transitions confirming the Standard model in particle physics to high precision.

iii) From the Standard model, it is also accepted that parity violation leads to small energy difference and different spectra between enatiomers of chiral molecules.

Molecular parity violating Hamiltonian (nonrelativistic limit).

$$\hat{H}_{pv}^{e-nucl} = \frac{G_F \alpha}{2\sqrt{2}} \sum_{i=1}^n \sum_{A=1}^N \left[Q_W(A) \{ \hat{\vec{p}}_i \, \hat{\vec{s}}_i, \delta^3(\vec{r}_i - \vec{r}_A) \}_+ + \left(-\lambda_A \right) \left(1 - 4\sin^2 \theta_W \right) \{ \hat{\vec{p}}_i \, \hat{\vec{I}}_A, \delta^3(\vec{r}_i - \vec{r}_A) \}_+ + 2i\lambda_A (1 - 4\sin^2 \theta_W) \times (\hat{\vec{s}}_i \times \hat{\vec{I}}_A) [\hat{\vec{p}}_i, \delta^3(\vec{r}_i - \vec{r}_A)] \right]$$

i) Major contribution comes from nuclear spin independent part.

ii) It is purely imaginary operator and gives zero expectation value for nonrelativistic real wavefunction.

iii) The parity violating energy is calculated as a static linear response function.

 $G_F = 2.22254 \times 10^{-14} \text{ E}_{h}$ Fermi constant α fine structure constant $Q_w(A) = Z_A (1 - 4 \sin^2 \theta_w) - N_A$ Z_A number of protons in nucleus A N_A number of neutrons in nucleus A $sin^2 \theta_w = 0.2319$ Weinberg angle

Parity violating potential E_{pv} as a static response function.

Parity-violating operator

$$\hat{H}_{pv}^{e-nucl} = \frac{G_F \alpha}{2\sqrt{2}} \sum_{i=1}^n \sum_{i=1}^A Q_w(A) \{\hat{\vec{p}}_i \, \hat{\vec{s}}_i, \delta^3(\vec{r}_i - \vec{r}_A)\}_+$$

Effective Spin-orbit coupling operator

$$\hat{H}_{SO} = \frac{\alpha^2}{2} \left[\sum_{i=1}^{n} \sum_{A=1}^{N} \eta_A Z_A \frac{\hat{\vec{l}}_{i,A} \hat{\vec{s}}_i}{\left| \vec{r}_A - \vec{r}_i \right|^3} \right]$$

$$E_{pv} = \left\langle \left\langle \hat{H}_{pv}; \hat{H}_{so} \right\rangle \right\rangle$$

Thank you !